Complementi di Analisi Matematica

2021-2022

Università di Pisa

Corso di Laurea Triennale in Fisica



Complementi di Analisi Matematica è un corso da 6 CFU (48 ore) del primo semestre del secondo anno del corso di Laurea Triennale in Fisica.

Prima lezione: lunedì 20 settembre 2021, ore 10:30.

Esame


L'esame consiste di una prova scritta e una prova orale. Può accedere all'orale solo chi ha superato la prova scritta dell'appello in corso. Il voto dello scritto è valido solo per l'appello in corso e non può essere conservato. In genere, l'esame orale si tiene la settimana dopo lo scritto.

Orario


Orario delle lezioni:  lunedì 10:30-12:30 (aula Fib A), martedì 12:30-15:30 (aula Fib A).


Gruppo Teams - 637AA 21/22 - COMPLEMENTI DI ANALISI MATEMATICA [FIS-L]

Programma


Capitolo 1. Elementi di topologia.

Lo spazio euclideo. Prodotto scalare e disuguaglianza di Cauchy-Schwartz. Distanza euclidea. Disuguaglianza triangolare. Convergenza di successioni e successioni di Cauchy. Insiemi aperti e insiemi chiusi. Insiemi compatti e compatti per successioni. Funzioni continue. Composizione di funzioni continue. Funzioni continue su insiemi compatti. Teorema di Weierstrass. Insiemi connessi per archi. Teorema del valore intermedio.


Capitolo 2. Calcolo differenziale e studio di funzioni di più variabili.

Funzioni derivabili e derivate parziali. Funzioni differenziabili. Esempi e controesempi. Differenziabilità, derivabilità e continuità. Teorema del differenziale. Derivate parziali di ordine superiore - teorema di Schwartz. Composizione di funzioni differenziabili. Formula per le derivate parziali della funzione composta. Matrice Hessiana. Formula di Taylor al secondo ordine. Punti critici. Massimi e minimi relativi e assoluti. Condizioni necessarie e sufficienti. Punti critici. Matrici semidefinite positive e matrici semidefinite negative. Matrici definite positive e matrici definite negative. Metodi per determinare se una matrice è definita (o semidefinita) positiva/negativa. Massimi e minimi locali sul bordo di un insieme regolare. Condizioni necessarie e sufficienti al primo e al secondo ordine. Vettore normale e vettore tangente al bordo di un insieme regolare. Teorema di Dini (detto anche della funzione implicita). Massimi e minimi vincolati. Moltiplicatori di Lagrange. Teorema della funzione


Capitolo 3. Forme differenziali ed integrali curvilinei.

Forme differenziali: 1-forme, 2-forme e k-forme. Operazioni con le forme differenziali: somma e prodotto con una funzione. Prodotto esterno. Differenziale di una funzione. Derivata esterna di una forma differenziale. Forme chiuse e forme esatte. Le forme esatte sono chiuse. Esempio di una forma chiuse che non è esatta. Integrazione di 1-forme su curve. Curve chiuse, semplici, regolari a tratti. Concatenamento e curve opposte. Integrale di 1-forme su curve. Integrazione di forme esatte su curve chiuse. Teorema della derivazione sotto il segno dell'integrale. Lemma di Poincaré sui rettangoli. Forme chiuse e forme esatte in aperti stellati. Domini diffeomorfi e forme differenziali. Insiemi semplicemente connessi. Integrazione di funzioni su curve. Integrale di una funzione continua su una curva. Integrazione su curve equivalenti, opposte e concatenate. Lunghezza di una curva.


Capitolo 4. Integrazione.

Integrale di Riemann su un dominio rettangolare. Partizioni e somme di Riemann superiore e inferiore. Integrale di Riemann superiore e inferiore. Integrabilità delle funzioni continue su domini rettangolari. Teorema di Fubini su domini rettangolari. Definizione di integrale su un insieme limitato. Domini normali. Integrabilità di una funzione continua su un dominio normale. Teorema di Fubini in domini normali. Formule di Gauss-Green. Teorema della divergenza. Orientazione in dimensione due. Curve che parametrizzano il bordo di un insieme in senso antiorario. Formula di Stokes. Cambio delle variabili in dimensione due. Integrazione in coordinate polari nel piano. Integrazione su superfici parametriche. Formula di Stokes per le superfici. Prodotto vettoriale in dimensione tre. Divergenza e rotore di un campo in dimensione tre. Integrazione di funzioni su superfici. Teorema del rotore.

Dispense



Registro
delle lezioni


Lezione 1 - lunedì 20/09.
Dispense:


Calendario accademico

Orario delle lezioni

Titolare del corso: Prof. Velichkov

bozhidar.velichkov[chiocciola]unipi.it